School of Mathematical and Natural Sciences
  • Future Students
    Begin Your Journey at Berry

    » Admissions Home 

    » Academics Home 

    » Campus Life 


    Undergraduate Admission 

    Graduate Admission 

    International Admission 

    Transfer Admission 

    Athletics Recruiting 

    Financial Aid Information 

    Visit Campus 

    Information Request 

    Pay Your Deposit 

    Apply Online 

    VikingWeb Student Portal 

    Virtual Tour

  • Berry Students
    Student Services



    Campus Safety 

    Career Center 

    Computer Labs 

    Counseling Center 

    Dining Services 

    Disability Services 

    Health & Wellness 

    Jobs on Campus 

    Mail Services 

    Tech Support 


    The Writing Center 


    Academic Calendar 

    Academic Student Services 

    Campbell School of Business 

    Charter School of Education & Human Sciences 

    Evans School of Humanities, Arts & Social Sciences 

    School of Mathematical & Natural Sciences 

    Division of Nursing



    Honors Program 

    International Programs (Study Abroad) 

    Memorial Library 

    Research Scholarships and Programs 

    Student Life

    Dean of Students 

    Cage Center Info 



    Outdoor Recreation 

    Rome Area Info 


    Service Opportunities 


    Student Activities 

    Student Directory 

    Student Housing 

    Student Work 

    Viking Code Handbook 

    Viking Fusion 


    Enrollment & Financial Information

    Business Office 

    Financial Aid 


    Tuition and Fees

  • Alumni & Friends

    Visit the Berry Alumni Web Site 

    Alumni Accent Archives 

    Alumni Center 

    Event Calendar 

    Berry Magazine 

    Sports Info & News 

    Support Berry 

  • Parents & Family

    Parent Information 

    FAQ for Parents 



    Academic Programs 

    Academic Student Services 

    Berry News 

    Business Office 

    Campus Safety 

    Counseling Center 

    Dean of Students 

    Dining Plan 

    Financial Aid 

    Health & Wellness 

    Sports News & Info 

    Student Housing 

  • Faculty & Staff


    Business Office 

    Campus Safety 

    Event Calendar 

    Faculty & Staff Directory 

    Human Resources (VikingWeb) 

    Mail Services 

    Tech Support 

  • Quick Links

    Academic Calendar


    Admissions Application 


    Berry Kids Programs 

    BERRY Magazine 

    BOLD Program 


    Business Office 

    Campus Police 

    Campus Visit 

    Career Center 


    Chaplain's Office 

    Child Development Center 

    Commencement Information 


    Counseling Center 

    Cultural Events Requirements 


    Driving Directions 

    Elementary/Middle School

    Financial Aid 

    First-year Experience 

    Graduate of Education 

    Health and Wellness 

    Human Resources 

    Information Technology 

    Institutional Research 

    Instructional Technology 

    Interfaith Council 

    International Programs (Study Abroad) 



    Mail Services 

    Majors List 

    MBA Program 

    Multicultural Affairs 

    Oak Hill & The Martha Berry Museum 

    Outdoor Recreation 

    Pay Bill 

    Performing Arts 


    President's Office 


    Public Relations 

    Quick Facts 



    Residence Life 


    Student Activities 

    Student Orientation (SOAR) 

    Student Printing FAQ

    Student Work Experience Program 

    Sustainability and Environmental Compliance 

    Viking Code Handbook 

    WAC (Writing Across Curriculum) 

    Women's Studies 

    Writing Center 

Overview of Physics & Astronomy at Berry College

What is physics? And for that matter, what exactly is astronomy?

Physics, in the words of Albert Einstein, is a refinement of everyday thinking. The natural world around you is made up of countless seemingly disparate phenomena: waves on the ocean, lightning from the clouds, rainbows in the sky, sunspots on the sun. The list is endless. Yet in the last few hundred years, it has become evident that all of these effects can be understood in terms of strikingly few basic ideas. Reality is not what it seems. The "differentness" of things is often only on the surface; go a little deeper into the picture, and you find remarkable unity. This understanding is one of the great rewards afforded by an intensive study of the physical world.

In the last 100 years, physicists have found again and again that the standard human view of the universe is severely limited. On a normal day, we will directly observe things ranging in size from about 100 microns (a bit smaller than the size of the period at the end of this sentence) to about 1 kilometer (a decent sized mountain). This is about 7 orders of magnitude (order of magnitude = factor of 10). However, from quarks and electrons with diameters of less than 1 femtometer (10^-15 meters) to the observed universe with a "size" of about 4 X 10^26 meters, we have now observed the physical world across 41 orders of magnitude. This means that our everyday slice of the universe is only 10^-34 times that which is known to exist. For emphasis, the distance range that people typically experience is 1 / 10,000,000,000,000,000,000,000,000,000,000,000 of that which has been observed. Wow! This obviously is quite a change from everyday thinking. There's lots more, too. Relativity tells us that time is not absolute; the faster clocks travel, the slower they run. They also run more slowly in the presence of a massive object (like the Sun). Quantum mechanics informs us that matter that is blurry and wavy, not definite and deterministic. Chaos theory opens up a world that is infinitely complex and changing but fundamentally the same, constant. In each of these cases, we ask: "But how can real things be like that?" The answer is, real things are that way; the only reason we are surprised is that our everyday thinking is so limited.

Ultimately, physicists don't need to know a lot of things, they just need to have a solid hold on a few fundamental concepts. Of course, that's only a small bit of the picture, really. Physicists come up with the concepts too, and this is the tough part. Any motivated physics major can fully grasp special relativity.  But how many could have invented the theory?

Now for the astronomy part. Astronomy (NOT ASTROLOGY, OKAY??) got started long before physics and is the scientific study of the heavens. These days one must know a bunch of physics to be an astronomer, because so much of what goes on up there is rendered comprehensible through the language of physics. Everything from meteorites lying about on the Earth's surface to the most distant objects known (quasars, billions of light years away) fall under the astronomy/astrophysics heading.

Also, it should be said that a whole lot of practical stuff has come from the study of physics: cancer treatments, air conditioning, laser shows, and lots more are made possible only because some physicist has spent time uncovering nature's inner workings. Well, laser shows may not be all that practical, but they sure are fun.

Why would I EVER want to major in such a subject?

Because there are few things more enjoyable in life than having your thinking refined! Physics is challenging, no doubt about that. You must master some mathematics. But, for the daring, it's a fantastic ride. You will come to see the world around you in a way that, presently, is absolutely inconceivable.

Not only that, but physicists are respected in the job market. Industry and business people know that physicists are able to think and are reliable problem solvers. There are many jobs available to you right out of undergraduate school, many not directly associated with traditional physics. See the APS Careers Page for more details. Not only is an undergraduate degree in physics important for getting accepted into physics and astronomy graduate programs, but it can be an important step along other paths. Like getting into law school, divinity school, and especially medical school. Medical schools love physics majors; a very high percentage of physics bachelor degree holders are accepted into medical school - see the Medical School Application Requirements (MSAR), published by the American Association of Medical Schools (AAMS).

Of course, if you already aspire to be a physicist or astronomer, this question is silly.

What goes on there? Why is Berry such a great place to study these subjects?

This is a very good question. Why not go to some large university where you can take a wider variety of courses and be taught by professors who are super-famous? Well, one answer is obvious: super-famous professors barely have time for their advanced graduate students; to most of them undergraduates are not much more than a pestilence. Now, while this is not totally true of every single super-famous professor at Large U., it is totally true of most of them. And who can blame them? They're there to publish, not to teach. Publishing, not spending hours teaching sophomores Lagrangian Mechanics, gets them raises and tenure. Not so here. If you want to learn, learn in a class (normally ten or less) with a professor who knows not just the subject, but you: your strengths and your weaknesses and when and how to push you. That's what happens here. And, although this may be true of many subjects, it is especially true of physics because most of physics is not obvious at all! You will need help. You will not become an expert as an undergrad; this is the time to establish a very firm hold on the basics. Go to Large U. for graduate school. But for first-rate undergraduate physics education, come here.

One of the distinct advantages of Berry is the type of instruction we offer in physics.  In most of your physics courses you will not sit around during class listening to a professor lecture.  Instead, you will be actively involved in doing physics under the supervision of a professor.  This active involvement may include discussing physics problems with other students, using a letter card to respond to multiple choice questions, solving problems on a tutorial worksheet, or presenting homework solutions to the class.  Research in physics educations shows that passive instruction (lecturing) is much less effective than active instruction when it comes to learning important physics concepts.  At Berry we fully embrace the research-proven methods of active learning, so you will get more out of your classroom experience than you would in a traditional lecture course at another school.  And if you don't get everything you need in the classroom, just stop by to see your professor.  We are always happy to work with our students outside of scheduled class times (we each have 10 scheduled office hours for this purpose every week).

Learning physics at Berry isn't just about taking courses.  Many students have physics-related jobs through our Student Work Program.  Some typical jobs are homework grader, tutor, lab setup, observatory assistant, and research assistant.  Many of our students who work as research assistants end up giving formal presentations of their work at professional conferences, or even co-authoring papers that are published in professional journals.   From 2000 to 2012, ten of our physics majors have been co-authors on a total of 13 papers.  That's an average of one publication per year, an impressive accomplishment considering the small number of physics majors at Berry.  Some of these papers have been published in prestigious physics and astronomy journals like The Astrophysical Journal, Physical Review Letters, Physical Review E and D, and The American Journal of Physics. 

Now, why would I study anything else anywhere else?

It's not really clear, is it?

Copyright © 2013 Berry College • 2277 Martha Berry Hwy NW • Mount Berry, GA 30149 • (706) 232 5374
  Berry Home | Directions | Policies | Employment | Translations: Chinese | Español | Korean   
Follow us:
  • Facebook
  • Twitter
  • YouTube
  • Vimeo
  • LinkedIn
  • Flickr
  • Instagram
Hide Berry Social Media Channel